不等式的证明测试题

时间:2024-11-06 13:50:12 晓丽 证明大全 我要投稿
  • 相关推荐

不等式的证明测试题

  从小学、初中、高中到大学乃至工作,我们都离不开试题,借助试题可以检验考试者是否已经具备获得某种资格的基本能力。大家知道什么样的试题才是好试题吗?以下是小编精心整理的不等式的证明测试题,欢迎阅读,希望大家能够喜欢。

不等式的证明测试题

  一、选择题(每小题6分,共42分)

  1.设0

  A.4ab B.2(a2+b2)

  C.(a+b)2 D.(a-b)2

  答案:C

  解析:令x=cos2θ,θ∈(0, ),则 =a2sec2θ+b2csc2θ=a2+b2+a2tan2θ+b2cot2θ≥a2+b2+2ab=(a+b)2.

  2.若a、b∈R,a2+b2=10,则a-b的取值范围是( )

  A.[-2 ,2 ] B.[-2 ,2 ]

  C.[- , ] D.[0, ]

  答案:A

  解析:设a= cosθ,b= sinθ,则a-b= (cosθ-sinθ)=2 cos(θ+ )∈[-2 ,2 ].

  3.已知a∈R+,则下列各式中成立的是( )

  A.cos2θlga+sin2θlgblg(a+b)

  C. =a+b D. >a+b

  答案:A

  解析:cos2θlga+sin2θlgb

  4.设函数f(x)=ax+b(0≤x≤1),则a+2b>0是f(x)>0在[0,1]上恒成立的( )

  A.充分而不必要条件 B.必要而不充分条件

  C.充要条件 D.既不充分也不必要条件

  答案:B

  解析:a+2b>0 a +b>0 f( )>0,不能推出f(x)>0,x∈[0,1];反之,f(x)>0,x∈[0,1] f( )>0 a+2b>0.

  5.(2010重庆万州区一模,7)已知函数y=f(x)满足:①y=f(x+1)是偶函数;②在[1,+∞)上为增函数.若x1<0,x2>0,且x1+x2<-2,则f(-x1)与f(-x2)的大小关系是( )

  A.f(-x1)>f(-x2) B.f(-x1)

  C.f(-x1)=f(-x2) D.f(-x1)与f(-x2)的大小关系不能确定

  答案:A

  解析:y=f(x+1)是偶函数f(x+1)=f(-x+1)f(x+2)=f(-x).

  又x1+x2<-2,-x1>2+x2>2,

  故f(-x1)>f(2+x2)=f(-x2).

  6.(2010湖北十一校大联考,9)定义在R上的偶函数y=f(x)满足f(x+2)=-f(x)对所有实数x都成立,且在[-2,0]上单调递增,a=f( ),b=f( ),c=f( 8),则下列成立的是( )

  A.a>b>c B.b>c>a C.b>a>c D.c>a>b

  答案:B

  解析:由f(x+2)=-f(x)有f(x+4)=f(x),∴T=4,而f(x)在R上为偶函数又在[-2,0]上单调递增,所以f(x)在[0,2]上单调递减.

  b=f( )=f(- )=f( ),c=f( 8)=f(-3)=f(1),a=f( ).

  ∵ >1> ,∴b>c>a.

  7.设a、b、c、d∈R,m= + ,n= ,则( )

  A.mn C.m≤n D.m≥n

  答案:D

  解析:设A(a,b),B(c,d),O(0,0),∵|OA|+|OB|≥|AB|,∴得m≥n.

  二、填空题(每小题5分,共15分)

  8.设x>0,y>0,A= ,B= ,则A,B的大小关系是__________________.

  答案:A

  解析:A= =B.

  9.已知x2+y2=1,对于任意实数x,y恒有不等式x+y-k≥0成立,则k的最大值是_______

  ______.

  答案:-

  解析:设x=cosθ,y=sinθ,k≤x+y=sinθ+cosθ= sin(θ+ ),∴k≤- .∴k的最大值为- .

  10.设{an}是等差数列,且a12+a112≤100,记S=a1+a2+…+a11则S的取值范围是______________.

  答案:[-55 ,55 ]

  解析:由 ≥( )2 ∈[-5 ,5 ].

  ∴S=a1+a2+…+a11

  =(a1+a11)+(a2+a10)+…+(a5+a7)+a6

  = (a1+a11)∈[-55 ,55 ].

【不等式的证明测试题】相关文章:

不等式的证明11-23

不等式证明11-23

导数证明不等式11-23

归纳法证明不等式11-23

分析法证明不等式11-23

推理与证明测试题11-23

不等式与不等式组中考复习要点08-01

不等式名言名句12-29

初一数学《不等式与不等式组》知识点【精品】07-20