- 相关推荐
几何证明选讲试题及参考答案
几何证明是属于宣讲的一个知识点,关于这些的是试题有哪些呢?下面就是学习啦小编给大家整理的几何证明选讲试题内容,希望大家喜欢。
几何证明试题
(1)四边形BCDE的外接圆是不是连接四边形中任意三点的三角形的外接圆?答案是肯定的!
(2)三角形的外接圆半径与解三角形中的哪个定理联系很紧密?
——正弦定理
正弦定理的表达形式: = = =2R,其中这里边的R,就是三角形的.外接圆半径。那么,我们只要找到三角形的一边长和该边所对的角,就能将半径求出,而不需做出圆心。
解题过程:在△ABC中,连接DE、CD,根据AE=4,AC=6易知 , .
则DE2 =AE2+AD2 所以DE=2 ,又在△ADC中,sin∠ACD= = =
所以在三角形DCE中, =2R=10 所以R=5 .
这种解题方法的掌握,是在有了扎实的基本功基础上的巧妙联想和合理推测证明,有利于学生知识体系的构建和基础知识的提升。
初中几何辅助线的规律
线、角、相交线、平行线
规律1
如果平面上有n(n≥2)个点,其中任何三点都不在同一直线上,那么每两点画一条直线,一共可以画出n(n-1)条。
规律2
平面上的n条直线最多可把平面分成〔n(n+1)+1〕个部分。
规律3
如果一条直线上有n个点,那么在这个图形中共有线段的条数为n(n-1)条。
规律4
线段(或延长线)上任一点分线段为两段,这两条线段的中点的距离等于线段长的一半。
规律5
有公共端点的n条射线所构成的交点的个数一共有n(n-1)个。
规律6
如果平面内有n条直线都经过同一点,则可构成小于平角的角共有2n(n-1)个。
规律7
如果平面内有n条直线都经过同一点,则可构成n(n-1)对对顶角。
规律8
平面上若有n(n≥3)个点,任意三个点不在同一直线上,过任意三点作三角形一共可作出n(n-1)(n-2)个。
规律9
互为邻补角的两个角平分线所成的角的度数为90°。
规律10
平面上有n条直线相交,最多交点的`个数为n(n-1)个。
规律11
互为补角中较小角的余角等于这两个互为补角的角的差的一半。
规律12
当两直线平行时,同位角的角平分线互相平行,内错角的角平分线互相平行,同旁内角的角平分线互相垂直。
规律13
初二数学证明题目
1、如图,AB=AC,∠BAC=90°,BD⊥AE于D,CE⊥AE于E.且BD>CE
,证明BD=EC+ED
.解答:证明:∵∠BAC=90°,CE⊥AE,BD⊥AE,
∴∠ABD+∠BAD=90°,∠BAD+∠DAC=90°,∠ADB=∠AEC=90°.
∴∠ABD=∠DAC.
又∵AB=AC,(
∴△ABD≌△CAE(AAS).
∴BD=AE,EC=AD.
∵AE=AD+DE,
∴BD=EC+ED.
2、△ABC是等要直角三角形。∠ACB=90°,AD是BC边上的中线,过C做AD的垂线,交AB于点E,交AD于点F,求证∠ADC=∠BDE
解:作CH⊥AB于H交AD于P,
∵在Rt△ABC中AC=CB,∠ACB=90°,
∴∠CAB=∠CBA=45°.
∴∠HCB=90°-∠CBA=45°=∠CBA.
又∵中点D,
∴CD=BD.
又∵CH⊥AB,
∴CH=AH=BH.
又∵∠PAH+∠APH=90°,∠PCF+∠CPF=90°,∠APH=∠CPF,
∴∠PAH=∠PCF.
又∵∠APH=∠CEH,
在△APH与△CEH中
∠PAH=∠ECH,AH=CH,∠PHA=∠EHC,
∴△APH≌△CEH(ASA).
∴PH=EH,
又∵PC=CH-PH,BE=BH-HE,
∴CP=EB.
在△PDC与△EDB中
PC=EB,∠PCD=∠EBD,DC=DB,
∴△PDC≌△EDB(SAS).
∴∠ADC=∠BDE.
2
证明:作OE⊥AB于E,OF⊥AC于F,
∵∠3=∠4,
∴OE=OF. (问题在这里。理由是什么埃我有点不懂)
∵∠1=∠2,
∴OB=OC.
∴Rt△OBE≌Rt△OCF(HL).
∴∠5=∠6.
∴∠1+∠5=∠2+∠6.
即∠ABC=∠ACB.
∴AB=AC.
∴△ABC是等腰三角形
过点O作OD⊥AB于D
过点O作OE⊥AC于E
再证Rt△AOD≌ Rt△AOE(AAS)
得出OD=OE
就可以再证Rt△DOB≌ Rt△EOC(HL)
得出∠ABO=∠ACO
再因为∠OBC=∠OCB
得出∠ABC=∠ABC
得出等腰△ABC
【几何证明选讲试题及参考答案】相关文章:
高中几何证明练习题及参考答案08-03
初中数学几何证明题及参考答案10-23
用综合法证明试题及参考答案08-03
从古至今几何证明定理08-03
关于几何中证明垂直的技巧08-03
陕西中考语文试题及参考答案01-27
小升初数学试题及参考答案03-20
民法学试题及参考答案08-03
科普知识竞赛试题及参考答案04-08
安全教育培训试题及参考答案03-24