- 相关推荐
最新的初一下册几何证明题
初一刚开始接触几何证明题,这类的证明题是一定的难度的。下面就是小编给大家整理的初一下几何证明题内容,希望大家喜欢。
初一下几何证明试题
1.黑板上写有1,2,3,……,1997,1998这1998个数,对它们进行如下操作:擦去其中三个数,再将这三个数和的个位数补写在黑板上。列如:,擦去5,13,1998后,添加6;再如擦去6,6,38后,添加0,等等。如果经过998次操作后,黑板上只剩下两个数,一个是25,问另一个是多少?
2.在线段AB上,先在A点点标注0,在B点标注2002,这次称为第一次操作;然后在AB中点C处标注(0+2002)/2=1001,称为第二次操作;又分别在得到的线段AC,BC的中点D,E处标注对应线段两端所标注的数字和的一半,即(0+1001)/2与(1001+2002)/2,称为第三次操作,照此下去,那么经过11次操作后,在线段AB上所有标注的数字之和是多少?
3.已知X,Y,Z满足:
X+[Y]+﹛Z﹜=-0.9
[X]+﹛Y﹜+Z=0.2
﹛X﹜+Y+[Z]=1.3
其中记号:对于数A,[A]表示不大于A的最大整数,{A}=A-[A],求X,Y,Z的值。
4.司机小李驾车在公路上均速行速,他看到里程碑上的数是两位数,1小时后,看到里程碑上的数恰好是第一次看到的相反数的两位数,再过一个小时,他看到里程碑上的数是第一次看到的两位数中间加个0,求小李每次在里程碑上看到的数。
5.某人拟得1,2.......几这几个数数输入电求平均数。当他输入完毕时,电脑显示只输入了(n-1)个数,平均数为35又7分之5。问末输入的一个数是多少
6.求使8p的2次方+1为素数的所有素数
7.已知一个等腰三角形的两边分别为22.85和两边的夹角为22.5°求第三边的长!
谈初中几何证明题的入门
初一了,学生开始从实验几何向论证几何过渡。在之前,虽然学过一部分,但没有格式上的特殊要求,只要能看懂图形,根据图形回答问题,也就是说初一是学生学习几何的关键期。要学好几何证明题,关键是顺利闯过几何证明题入门这一关。如果能把握好了这一步,就可以顺利地进行几何这门学科的学习。那么,怎样才能使学生过好这一关呢?
一、强心理攻势——闯畏难情绪关
初一、初二学生的年龄,一般都在十三、十四岁左右,从心理学角度来看,正是自觉思维向逻辑思维的过度阶段。因此,几何证明的入门,也就是学生逻辑思维的起步。这种思维方式学生才接触,肯定会遇到一些困难。从自己多年的教学实践来看,有的学生在这时“跌倒了”,就丧失了信心,以至于几何越学越糟,最终成了几何“门外汉”。但有的学生,在这时遇到了一些困难,失败了,却信心十足,不断地去总结,认真思考,最后越学越有兴趣。2008学年当我接班伊始,我就注意到那个坐在教室中间的小周:虽然她平时上课能安静听讲,但是集中注意力时间很短,记忆能力也特别差,当老师提问她时,总是羞涩地低下头,默不作声。她经常偷工减料地写作业,对自己的要求也不高,所以她数学总分只有30多分。我想自己一定要努力改变这一情况,共同寻找一条适合她的教学之路。
通过与她谈心,让她意识到几何证明题是学习几何的入门,是学生逻辑思维的起步。“你和同学们同时开始学习几何,相信自己的能力,只要上课认真听讲,在学习过程中不断地总结经验,有不懂的,有疑问的及时问老师,相信自己的能力,同时也是证明自己不比别人差的一个最好的机会。”“不管在什么情况下,老师做到有问必答,也保证不会有任何批评的话。老师相信在你自己的不断总结和尝试下,在几何证明这一块上不会输于任何一个学生。”我让其明白初一、初二正是学习几何证明的一个契机,只要能学好,代数部分也会有所提高,更何况她的前一阶段的数学成绩在个人的努力下还是有所提高,说明思维能力还是比较强的。通过谈心她表示愿意克服困难,和大家一起学习几何证明。当她有进步后,及时地给予表扬。“你做得真好,继续努力!!”“虽然有点小问题,但有进步,加油!”在交上的作业中,总是给予点评,写些鼓励的语言。在不断的鼓励和帮助下,学习逐渐有了信心,学习成绩在逐步提高。
二、小梯度递进——闯层层技能关
学好几何证明,起步要稳,因此要求学生在学习几何时要扎扎实实,一步一个脚印,在掌握好几何基础知识的同时,还要培养学生的逻辑思维能力。
1、牢记几何语言
几何证明题,要使用几何语言,这对于刚学几何的学生来说,仅当又学一门“外语”,并努力尽快地掌握这门“外语”的语言使用和表达能力。
首先,从几何第一课起,就应该特别注意几何语言的规范性,要让学生理解并掌握一些规范性的几何语句。如:“延长线段AB到点C,使AC=2AB”,“过点C作CD⊥AB,垂足为点D”,“过点A作l∥CD”等,每一句通过上课的教学,课后的辅导,手把手的作图,表达几何语言;表达几何语言后作图,反复多次,让学生理解每一句话,看得懂题意。
其次,要注意对几何语言的理解,几何语言表达要确切。例如:钝角的意义是“大于直角而小于平角的叫钝角”,“大于直角或小于平角的角叫钝角”,把“而”字说成了“或”字,这就是学习对几何语言理解不佳,造成的表达不确切。“一字之差”意思各异,在辅导时,注重语言的准确性,对其犯的错误反复更正,做到学习之初要严谨。
2、规范推理格式
数学中推理证明的书写格式有许多种,但最基本的是演绎法,也就是从已知条件出发,根据已经学过的数学概念、公理、定理等知识,顺着推理,由“已知”得“推知”,由“推知”得“未知”,逐步地推出求证的结论来。这种证题格式一般叫“演绎法”,课本上的定理证明,例题的证明,多数是采用这种格式。它的书写形式表达常用语言是“因为…,所以…”特别是一开始学习几何证明,首先要掌握好这种推理格式,做到规范化。如:在平行线性质的教学中,开始以填空的形式填写,
图1:因为∠1=∠2(已知)
所以 a∥b()
其后把图形复杂化
图2:因为∠DAB=∠B(已知)
所以DE∥BC()
改变填空的形式
因为____________(已知)
所以DE∥BC()
通过反复、不同形式的填写,让学生掌握基本性质的表达格式,体会图形与题目存在的依存关系。同时通过从定义、性质、判定出发,由简到难,逐步深入,让学生提高对几何证明的信心。
初中数学几何证明的学习方法
一、初中学生的几何证明学习现状
1、怕
2、审题不仔细
3、数学用语、书写不规范。
4、思维跳跃,逻辑混乱。
5、有的性质定理记不住,即使记住了到用的时候又不知该用哪个。
6、两级分化严重
二、造成学生几何证明题学习困难的原因
(一)教师的原因:
一开始就过分强调严密、抽象、困难,过分强调演绎推理,抬高了几何的门槛,更加大了学生的入门语言掌握难度。没有很好地引导学生人门,把学生吓退在几何的门外。加之个别教师不善于联系实际,漠视周围丰富的几何素材,从书本到书本,枯燥无味,使学生缺少将所学知识与现实生活紧密联系的机会,使学生的空间观念、空间想象能力的形成和培养受到相当大的限制。更有一些教师受条件限制不能或不会利用多媒体等先进教育技术,没有设计丰富多样的数学活动,不善于把几何知识讲活,讲出趣味性,教得太死,扼制了学生的思维发展。
(二)学生的原因:
第一,没有解决好“入门”问题。小学阶段对一些简单图形性质的认识,往往是通过观察和实验,对一些图形的研究也仅仅侧重于面积和体积的计算。在思维方法上以形象思维为主。在初中几何学习中,虽然图形直观能对寻找解体方法有所启示,然而,单凭形象思维不能解决几何问题。
第二,没有过好几何的语言关。几何语言有点类似文言文。用通常语言人人都会表述的事情,却被几何语言弄得很别扭。例如“怎样比较两条线段的大小”,基本做法其实人人都会,就是把它们的“一端对齐,看另一端”。但对几何教科书上的叙述:“把线段AB移到AB上,使A与A重合,AB顺着AB落下,这时如果B落在点A和点B之间,就说线段AB小于线段AB,记作AA
第三,没有体会到成功的愉悦。事实上,成功和进步是可以带来信心的。一道几何题证出来后,学生会感到很高兴,很自豪,很有信心。然而,并不是每一个学生在学习几何初期都能体会到的。大多数学生只有一筹莫展的痛苦因而失去自信。
第四,概念多,记忆有困难。在平面几何概念的学习中,如果学生对自己学习知识的概念的形成过程不了解,没有能力开发和完善自己的学习策略,那就只能死记硬背和生搬硬套定义,结果是一知半解,似懂非懂,造成感知与概括之间的思维断层。
知识拓展:由于证明的难度,有的教师为了让学生以后在学习过程中能够掌握严谨的几何语言表述,在初一阶段就让学生写出严谨的证明过程。
【最新的初一下册几何证明题】相关文章:
初中数学几何证明题及参考答案10-23
初一下册几何证明11-23
初三几何证明题试题及参考答案03-17
初一英语下册期中测试卷及答案最新12-07
初中几何证明11-23
2015最新初一下册暑假生活答案(数学)03-08
一道证明题作文11-21
曾几何时作文07-28
导数几何意义11-12
《几何的初步认识》的教案03-31