比较法证明不等式的过程

时间:2022-08-03 09:42:53 证明大全 我要投稿
  • 相关推荐

比较法证明不等式的过程

  比较法是数学中一个常见的方法,那这个方法会怎么证明不等式呢?下面就是百分网小编给大家整理的比较法证明不等式内容,希望大家喜欢。

比较法证明不等式的过程

  比较法证明不等式方法一

  .比较法比较法是证明不等式的最基本、最重要的方法之一,它是两个实数大小顺序和运算性质的直接应用,比较法可分为差值比较法(简称为求差法)和商值比较法(简称为求商法)。

  (1)差值比较法的理论依据是不等式的基本性质:“a-b≥0a≥b;a-b≤0a≤b”。其一般步骤为:①作差:考察不等式左右两边构成的差式,将其看作一个整体;②变形:把不等式两边的差进行变形,或变形为一个常数,或变形为若干个因式的积,或变形为一个或几个平方的'和等等,其中变形是求差法的关键,配方和因式分解是经常使用的变形手段;③判断:根据已知条件与上述变形结果,判断不等式两边差的正负号,最后肯定所求证不等式成立的结论。应用范围:当被证的不等式两端是多项式、分式或对数式时一般使用差值比较法。

  (2)商值比较法的理论依据是:“若a,b∈R+,a/b≥1a≥b;a/b≤1a≤b”。其一般步骤为:①作商:将左右两端作商;②变形:化简商式到最简形式;③判断商与1的大小关系,就是判定商大于1或小于1。应用范围:当被证的不等式两端含有幂、指数式时,一般使用商值比较法。

  2.综合法利用已知事实(已知条件、重要不等式或已证明的不等式)作为基础,借助不等式的性质和有关定理,经过逐步的逻辑推理,最后推出所要证明的不等式,其特点和思路是“由因导果”,从“已知”看“需知”,逐步推出“结论”。其逻辑关系为:AB1 B2 B3… BnB,即从已知A逐步推演不等式成立的必要条件从而得出结论B。

  a>b>0,求证:a^ab^b>(ab)^a+b/2

  因a^a*b^b=(ab)^ab,

  又ab>a+b/2

  故a^a*b^b>(ab)^a+b/2

  已知:a,b,c属于(-2,2).求证:ab+bc+ca>-4.

  用极限法取2或-2,结果大于等于-4,因属于(-2,2)不包含2和-2就不等于-4,结果就只能大于-4

  下面这个方法算不算“比较法”啊?

  作差 M = ab+bc+ca - (-4) = ab+bc+ca+4

  构造函数 M = f(c) = (a+b)c + ab+4

  这是关于 c 的一次函数(或常函数),

  在 cOM 坐标系内,其图象是直线,

  而 f(-2) = -2(a+b) + ab+4 = (a-2)(b-2) > 0(因为 a<2, b<2)

  f(2) = 2(a+b) + ab+4 = (a+2)(b+2) > 0(因为 a>-2, b>-2)

  所以 函数 f(c) 在 c∈(-2, 2) 上总有 f(c) > 0

  即 M > 0

  即 ab+bc+ca+4 > 0

  所以 ab+bc+ca > -4

  比较法证明不等式方法二

  设x,y∈R,求证x^2+4y^2+2≥2x+4y

  (x-1)²≥0

  (2y-1)²≥0

  x²-2x+1≥0

  4y²-4x+1≥0

  x²-2x+1+4y²-4x+1≥0

  x²+4y²+2≥2x+4x

  除了比较法还有:

  求出中间函数的值域:

  y=(x^2-1)/(x^2+1)

  =1-2/(x^2+1)

  x为R,

  y=2/(x^2+1)在x=0有最小值是2,没有最大值,趋于无穷校

  所以有:

  -1<=y=1-2/(x^2+1)<1

  原题得到证明

  比较法:

  ①作差比较,要点是:作差——变形——判断。

  这种比较法是普遍适用的,是无条件的。

  根据a-b>0 a>b,欲证a>b只需证a-b>0;

  ②作商比较,要点是:作商——变形——判断。

  这种比较法是有条件的,这个条件就是“除式”的符号一定。

  当b>0时,a>b >1。

  比较法是证明不等式的.基本方法,也是最重要的方法,有时根据题设可转化为等价问题的比较(如幂、方根等)

  综合法是从已知数量与已知数量的关系入手,逐步分析已知数量与未知数量的关系,一直到求出未知数量的解题方法。

  数学归纳法证明不等式的基本知识

  数学归纳法的基本原理、步骤和使用范围

  (1)在数学里,常用的推理方法可分为演绎法和归纳法,演绎法一般到特殊,归纳法是由特殊到一般.由一系列有限的特殊事例得出一般结论的推理方法,通常叫归纳法。在归纳时,如果逐个考察了某类事件的所有可能情况,因而得出一般结论,那么结论是可靠的.这种归纳法叫完全归纳法(通常也叫枚举法)如果考察的只是某件事的部分情况,就得出一般结论,这种归纳法叫完全归纳法.这时得出的结论不一定可靠。数学问题中,有一类问题是与自然数有关的命题,因为自然数有无限多个,我们不可能就所有的自然数一一加以验证,所以用完全归纳法是不可能的.然而只就部分自然数进行验证所得到的结论,是不一定可靠的

  例如一个数列的通项公式是an(n25n5)2

  容易验证a1=1,a2=1,a3=1,a4=1,如果由此作出结论——对于任何nN+, an(n25n5)2=1都成立,那是错误的.

  事实上,a5=25≠1.

  因此,就需要寻求证明这一类命题的一种切实可行、比较简便而又满足逻辑严谨性要求的新的方法——数学归纳法.

  (2)数学归纳法是一种重要的数学证明方法,其中递推思想起主要作用。形象地说,多米诺骨牌游戏是递推思想的一个模型,数学归纳法的基本原理相当于有无限多张牌的多米诺骨牌游戏,其核心是归纳递推.

  一般地,当要证明一个命题对于不小于某正整数n0的所有正整数n都成立时,可以用一下两个步骤:(1)证明当n=n0(例如n0=1或2等)时命题成立;

  (2)假设当n=k(kN,且k≥n0)时命题成立,证明当n=k+1时命题也成立.在完成了这两个步骤以后,就可以断定命题对于不小于n0所有自然数都成立.这种证明方法称为数学归纳法.

  自然数公理(皮亚诺公理)中的'“归纳公理”是数学归纳法的理论根据,数学归纳法的两步证明恰是验证这条公理所说的两个性质.数学归纳法的适用范围仅限于与自然数n有关的命题.这里的n是任意的正整数,它可取无限多个值.

  附录:下面是自然数的皮亚诺公理,供有兴趣的同学阅读.

  任何一个象下面所说的非空集合N的元素叫做自然数,在这个集合中的某些元素a与b之间存在着一种基本关系:数b是数a后面的一个“直接后续”数,并且满足下列公理:

  ①1是一个自然数;

  ②在自然数集合中,每个自然数a有一个确定“直接后续”数a’;

  ③a’≠1,即1不是任何自然数的“直接后续”数;

  ④由a’ =b’推出a=b,这就是说,每个自然数只能是另一个自然数的“直接后续”数;

  ⑤设M是自然数的一个集合,如果它具有下列性质:(Ⅰ)自然数1属于M,(Ⅱ)如果自然数a属于M,那么它的一个“直接后续”数a’也属于M,则集合M包含一切自然数.

  其中第5条公理又叫做归纳公理,它是数学归纳法的依据.

  (3)数学归纳法可以证明与自然数有关的命题,但是,并不能简单地说所有涉及正整数n的命题都可以用数学归纳法证明.

  例如用数学归纳法证明(1+1)n(n N)的单调性就难以实现.一般来说,n

  从k=n到k=n+1时,如果问题中存在可利用的递推关系,则数学归纳法有用武之地,否则使用数学归纳法就有困难.