- 相关推荐
中考数学证明题最新试题
中考数学是一定会考到证明题的,关于证明题的试题是怎样的呢?下面就是百分网小编给大家整理的中考数学证明题内容,希望大家喜欢。
中考数学证明题一
O是已知线段AB上的一点,以OB为半径的圆O交AB于点C,以线段AO为直径的半圆圆o于点D,过点B作AB的垂线与AD的延长线交于点E
(1)说明AE切圆o于点D
(2)当点o位于线段AB何处时,△ODC恰好是等边三角形〉?说明理由
答案:一题:显然三角形DOE是等边三角形:
理由:
首先能确定O为圆心
然后在三角形OBD中:BO=OD,再因角B为60度,所以三角形OBD为等边三角形;
同理证明三角形OCE为等边三角形
从而得到:角BOD=角EOC=60度,推出角DOE=60度
再因为OD=OE,三角形DOE为等腰三角形,结合上面角DOE=60度,得出结论:
三角形DOE为等边三角形
中考数学证明题二
要证明三角形ODE为等边三角形,其实还是要证明角DOE=60度,因为我们知道三角形ODE是等腰三角形。
此时,不妨设角ABC=X度,角ACB=Y度,不难发现,X+Y=120度。
此时我们要明确三个等腰三角形:ODE ; BOD ; OCE
此时在我们在三角形BOD中,由于角OBD=角ODB=X度
从而得出角BOD=180-2X
同理在三角形OCE中得出角EOC=180-2Y
则角BOD+角EOC=180-2X + 180 -2Y,整理得:360-2(X+Y)
把X+Y=120代入,得120度。
由于角EOC+角BOD=120度,所以角DOE就为60度。
外加三角形DOE本身为等腰三角形,所以三角形DOE为等边三角形!
中考数学证明题三
已知,如图,PB、PC分别是△ABC的外角平分线,且相交于点P。
求证:点P在∠A的平分线上。
回答人的补充 2010-07-19 00:10 1.在三角形ABC中,角ABC为60度,AD、CE分别平分 角BAC 角ACB,试猜想,AC、AE、CD有怎么样的数量关系
2.把等边三角形每边三等分,经其向外长出一个边长为原来三分之一的小等边三角形,称为一次生长,如生长三次,得到的多边形面积是原三角形面积的几倍
求证:同一三角形的重心、垂心、三条边的中垂线的交点三点共线。 (这条线叫欧拉线) 求证:同一三角形的三边的.中点、三垂线的垂足、各顶点到垂心的线段的中点这9点共圆。~~ (这个圆叫九点圆)
3.证明:对于任意三角形,一定存在两边a、b,满足a比b大于等于1,小于2分之根5加1
4.已知△ABC的三条高交于垂心O,其中AB=a,AC=b,∠BAC=α。请用只含a、b、α三个字母的式子表示AO的长(三个字母不一定全部用完,但一定不能用其它字母)。
5.设所求直线为y=kx+b (k,b为常数.k不等于0). 则其必过x-y+2=0与x+2y-1=0的交点(-1,1).所以b=k+1,即所求直线为y=kx+k+1 (1) 过直线x-y+2=0与Y轴的交点(0,2)且垂直于x-y+2=0的直线为y=-x+2 (2). 直线(2)与 直线(1)的交点为A,直线(2)与 直线x+2y-1=0的交点为B,则AB的中点为(0,2),由线段中点公式可求k.
6. 在三角形ABC中,角ABC=60,点P是三角ABC内的一点,使得角APB=角BPC=角CPA,且PA=8 PC =6则PB= 2 P是矩形ABCD内一点,PA=3 PB= 4 PC=5 则PD= 3 三角形ABC是等腰直角三角形,角C=90 O是三角形内一点,O点到三角形各边的距离都等于1,将三角形ABC饶点O顺时针旋转45度得三角形A1B1C1 两三角形的公共部分为多边形KLMNPQ, 1)证明:三角形AKL 三角形BMN 三角形CPQ 都是等腰直角三角形 2)求三角形ABC与三角形A1B1C1公共部分的面积。
已知三角形ABC,a,b,c分别为三边. 求证:三角形三边的平方和大于等于16倍的根号3 (即:a2+b2+c2大于等于16倍的根号3)
【中考数学证明题最新试题】相关文章:
中考数学模拟试题08-04
精选中考数学试题08-30
中考数学试题汇总08-31
最新小升初数学试题精选08-20
最新小升初数学试题08-30
2016最新中考英语模拟试题08-08
中考数学强化训练试题10-30
精选最新数学试题附答案08-29
小升初数学试题最新汇总08-30
最新小升初数学试题练习09-18