用向量怎么证明推导正弦定理

时间:2022-09-25 11:46:19 证明大全 我要投稿
  • 相关推荐

用向量怎么证明推导正弦定理

  正弦定理是一个不错的数学定理,这该怎么用向量来证明呢?下面就是百分网小编给大家整理的用向量证明正弦定理内容,希望大家喜欢。

用向量怎么证明推导正弦定理

  用向量证明正弦定理事例1

  如图1,△ABC为锐角三角形,过点A作单位向量j垂直于向量AC,则j与向量AB的夹角为90°-A,j与向量CB的夹角为90°-C

  由图1,AC+CB=AB(向量符号打不出)

  在向量等式两边同乘向量j,得·

  j·AC+CB=j·AB

  ∴│j││AC│cos90°+│j││CB│cos(90°-C)

  =│j││AB│cos(90°-A)

  ∴asinC=csinA

  ∴a/sinA=c/sinC

  同理,过点C作与向量CB垂直的单位向量j,可得

  c/sinC=b/sinB

  ∴a/sinA=b/sinB=c/sinC

  用向量证明正弦定理解答

  记向量i ,使i垂直于AC于C,△ABC三边AB,BC,CA为向量a,b,c

  ∴a+b+c=0

  则i(a+b+c)

  =i·a+i·b+i·c

  =a·cos(180-(C-90))+b·0+c·cos(90-A)

  =-asinC+csinA=0

  接着得到正弦定理

  其他

  在锐角△ABC中,设BC=a,AC=b,AB=c。作CH⊥AB垂足为点H

  CH=a·sinB

  CH=b·sinA

  ∴a·sinB=b·sinA

  得到a/sinA=b/sinB

  同理,在△ABC中,

  b/sinB=c/sinC

  证明a/sinA=b/sinB=c/sinC=2R:

  任意三角形ABC,作ABC的外接圆O.

  作直径BD交⊙O于D. 连接DA.

  因为直径所对的圆周角是直角,所以∠DAB=90度

  因为同弧所对的圆周角相等,所以∠D等于∠C.

  所以c/sinC=c/sinD=BD=2R

  类似可证其余两个等式。

  用向量叉乘表示面积则 s = CB 叉乘 CA = AC 叉乘 AB

  => absinC = bcsinA (这部可以直接出来哈哈,不过为了符合向量的做法)

  => a/sinA = c/sinC

  2015-7-18 17:16 jinren92 | 三级

  记向量i ,使i垂直于AC于C,△ABC三边AB,BC,接着得到正弦定理 其他步骤2. 在锐角△ABC中,证明a/sinA=b/sinB=c/sinC=2R: 任意三角形ABC,

  正弦定理定义

  正弦定理(The Law of Sines)是三角学中的一个基本定理,它指出“在任意一个平面三角形中,各边和它所对角的正弦值的比相等且等于外接圆半径的2倍”,即a/sinA = b/sinB =c/sinC = 2R(R为外接圆半径)。正弦定理是解三角形的重要工具。正弦定理指出了任意三角形中三条边与对应角的正弦值之间的一个关系式。一般地,把三角形的三个角A、B、C和它们的对边a、b、c叫做三角形的元素。一般地,已知两边和其中一边的对角解三角形,有两解、一解、无解三种情况,可参考三角形性质、钝角三角形性质进行判断。

  正弦定理指出了任意三角形中三条边与对应角的正弦值之间的一个关系式。由正弦函数在区间上的单调性可知,正弦定理非常好地描述了任意三角形中边与角的一种数量关系。

  一般地,把三角形的三个角A、B、C和它们的对边a、b、c叫做三角形的元素。已知三角形的几个元素求其他元素的过程叫做解三角形。正弦定理是解三角形的重要工具。

  1、在解三角形中,有以下的应用领域:

  已知三角形的两角与一边,解三角形。

  已知三角形的两边和其中一边所对的角,解三角形。

  运用a:b:c=sinA:sinB:sinC解决角之间的转换关系。

【用向量怎么证明推导正弦定理】相关文章:

人教版向量法证明正弦定理02-28

怎么证明勾股定理06-07

《平面向量基本定理》教案(精选10篇)10-27

考研数学高数重要定理证明汇总01-26

房贷用收入证明02-13

离职证明怎么写07-04

资产证明怎么写09-13

贫困证明怎么写08-16

资产证明怎么开07-19