- 相关推荐
二元函数是怎么证明
二元函数是数学的知识,关于它的极限证明是怎么一回事呢?下面就是学习啦小编给大家整理的二元函数极限证明内容,希望大家喜欢。
二元函数极限证明1
设P=f(x,y),P0=(a,b) ,当P→P0 时f(x,y)的极限是x,y同时趋向于a,b时所得到的称为二重极限。
此外,我们还要讨论x,y先后相继地趋于a,b时的极限,称为二次极限。
我们必须注意有以下几种情形:
(1)两个二次极限都不存在而二重极限仍有可能存在
(2)两个二次极限存在而不相等
(3)两个二次极限存在且相等,但二重极限仍可能不存在
二元函数极限证明2
函数f(x )当x →X0时极限存在,不妨设:limf(x)=a(x →X0)
根据定义:对任意ε>0,存在δ>0,使当|x-x0|<δ时,有|f(x)-a|<ε
而|x-x0|<δ即为x属于x0的某个邻域U(x0;δ)
又因为ε有任意性,故可取ε=1,则有:|f(x)-a|<ε=1,即:a-1
再取M=max{|a-1|,|a+1|},则有:存在δ>0,当任意x属于x0的某个邻域U(x0;δ)时,有|f(x)|
二元函数极限证明3
首先,我的方法不正规, 其次,正确不正确有待考察。
1,y以 y=x^2-x 的`路径趋于0 Limited sin (x+y)/x^2 =Limited sinx^2/x^2=1 而 y=x 的路径趋于0 结果是无穷大。
2,3 可以用类似的方法,貌似同济书上是这么说的,二元函数在该点极限存在,是P(x,y) 以任何方式趋向于该点。
二元函数极限证明2
f(x,y)={(x^2+y^2)/(|x|+|y|)}*sin(1/x)
显然有y->0,f->(x^2/|x|)*sin(1/x)存在
当x->0,f->(y^2/|y|)*sin(1/x),sin(1/x)再0处是波动的 所以不存在
而当x->0,y->0时
由|sin(1/x)|<=1得|f|<=(x^2+y^2)/(|x|+|y|)
而x^2+y^2<=x^2+y^2+2*|x||y|=(|x|+|y|)^2
所以|f|<=|x|+|y|
所以显然当x->0,y->0时,f的极限就为0
这个就是你说的,唯一不一样就是非正常极限是不存在而不是你说的
正无穷或负无穷或无穷,我想这个就可以了
就我这个我就线了好久了
【二元函数是怎么证明】相关文章:
函数极限证明06-23
关于函数极限如何证明08-04
构造函数证明不等式06-23
函数法证明不等式06-23
excel计数函数怎么用11-11
怎么使用sumif函数的方法11-24
数学中函数极限的证明定义11-24
需求函数的英文怎么说01-25