教学设计

新高一数学衔接课教案

时间:2022-12-09 09:36:13 振濠 教学设计 我要投稿
  • 相关推荐

新高一数学衔接课教案(精选12篇)

  作为一名为他人授业解惑的教育工作者,总不可避免地需要编写教案,编写教案有利于我们弄通教材内容,进而选择科学、恰当的教学方法。那么应当如何写教案呢?以下是小编帮大家整理的新高一数学衔接课教案,欢迎大家分享。

新高一数学衔接课教案(精选12篇)

  新高一数学衔接课教案 篇1

  一、教学目标

  1.知识与技能:

  掌握画三视图的基本技能,丰富学生的空间想象力。

  2.过程与方法:

  通过学生自己的亲身实践,动手作图,体会三视图的作用。

  3.情感态度与价值观:

  提高学生空间想象力,体会三视图的作用。

  二、教学重点:

  画出简单几何体、简单组合体的三视图;

  难点:

  识别三视图所表示的空间几何体。

  三、学法指导:观察、动手实践、讨论、类比。

  四、教学过程

  (一)创设情景,揭开课题

  展示庐山的'风景图——“横看成岭侧看成峰,远近高低各不同”,这说明从不同的角度看同一物体视觉的效果可能不同,要比较真实反映出物体,我们可从多角度观看物体。

  (二)讲授新课

  1、中心投影与平行投影:

  中心投影:光由一点向外散射形成的投影;

  平行投影:在一束平行光线照射下形成的投影。

  正投影:在平行投影中,投影线正对着投影面。

  2、三视图:

  正视图:光线从几何体的前面向后面正投影,得到的投影图;

  侧视图:光线从几何体的左面向右面正投影,得到的投影图;

  俯视图:光线从几何体的上面向下面正投影,得到的投影图。

  三视图:几何体的正视图、侧视图和俯视图统称为几何体的三视图。

  三视图的画法规则:长对正,高平齐,宽相等。

  长对正:正视图与俯视图的长相等,且相互对正;

  高平齐:正视图与侧视图的高度相等,且相互对齐;

  宽相等:俯视图与侧视图的宽度相等。

  3、画长方体的三视图:

  正视图、侧视图和俯视图分别是从几何体的正前方、正左方和正上方观察到有几何体的正投影图,它们都是平面图形。

  长方体的三视图都是长方形,正视图和侧视图、侧视图和俯视图、俯视图和正视图都各有一条边长相等。

  4、画圆柱、圆锥的三视图:

  5、探究:

  画出底面是正方形,侧面是全等的三角形的棱锥的三视图。

  (三)巩固练习

  课本P15练习1、2;P20习题1·2[A组]2

  (四)归纳整理

  请学生回顾发表如何作好空间几何体的三视图

  (五)布置作业

  课本P20习题1·2[A组]1

  新高一数学衔接课教案 篇2

  教学目标

  1、使学生掌握的概念,图象和性质

  (1)能根据定义判断形如什么样的函数是,了解对底数的限制条件的合理性,明确的定义域

  (2)能在基本性质的指导下,用列表描点法画出的图象,能从数形两方面认识的性质

  (3)能利用的性质比较某些幂形数的大小,会利用的图象画出形如的图象

  2、通过对的概念图象性质的学习,培养学生观察,分析归纳的能力,进一步体会数形结合的思想方法

  3、通过对的研究,让学生认识到数学的应用价值,激发学生学习数学的兴趣·使学生善于从现实生活中数学的发现问题,解决问题·教学建议

  教材分析

  (1)是在学生系统学习了函数概念,基本掌握了函数的性质的基础上进行研究的,它是重要的基本初等函数之一,作为常见函数,它既是函数概念及性质的第一次应用,也是今后学习对数函数的基础,同时在生活及生产实际中有着广泛的应用,所以应重点研究·

  (2)本节的教学重点是在理解定义的基础上掌握的图象和性质·难点是对底数在和时,函数值变化情况的区分·

  (3)是学生完全陌生的一类函数,对于这样的函数应怎样进行较为系统的理论研究是学生面临的重要问题,所以从的研究过程中得到相应的结论固然重要,但更为重要的'是要了解系统研究一类函数的方法,所以在教学中要特别让学生去体会研究的方法,以便能将其迁移到其他函数的研究·

  教法建议

  (1)关于的定义按照课本上说法它是一种形式定义即解析式的特征必须是的样子,不能有一点差异,诸如,等都不是·

  (2)对底数的限制条件的理解与认识也是认识的重要内容·如果有可能尽量让学生自己去研究对底数,指数都有什么限制要求,教师再给予补充或用具体例子加以说明,因为对这个条件的认识不仅关系到对的认识及性质的分类讨论,还关系到后面学习对数函数中底数的认识,所以一定要真正了解它的由来·

  关于图象的绘制,虽然是用列表描点法,但在具体教学中应避免描点前的盲目列表计算,也应避免盲目的连点成线,要把表列在关键之处,要把点连在恰当之处,所以应在列表描点前先把函数的性质作一些简单的讨论,取得对要画图象的存在范围,大致特征,变化趋势的大概认识后,以此为指导再列表计算,描点得图象·

  新高一数学衔接课教案 篇3

  一、教学目标:

  掌握向量的概念、坐标表示、运算性质,做到融会贯通,能应用向量的有关性质解决诸如平面几何、解析几何等的问题。

  二、教学重点:

  向量的性质及相关知识的综合应用。

  三、教学过程:

  主要知识:

  掌握向量的概念、坐标表示、运算性质,做到融会贯通,能应用向量的有关性质解决诸如平面几何、解析几何等的问题。

  四、小结:

  1、进一步熟练有关向量的运算和证明;能运用解三角形的`知识解决有关应用问题,

  2、渗透数学建模的思想,切实培养分析和解决问题的能力。

  新高一数学衔接课教案 篇4

  1、教材(教学内容)

  本课时主要研究任意角三角函数的定义。三角函数是一类重要的基本初等函数,是描述周期性现象的重要数学模型,本课时的内容具有承前启后的重要作用:承前是因为可以用函数的定义来抽象和规范三角函数的定义,同时也可以类比研究函数的模式和方法来研究三角函数;启后是指定义了三角函数之后,就可以进一步研究三角函数的性质及图象特征,并体会三角函数在解决具有周期性变化规律问题中的作用,从而更深入地领会数学在其它领域中的重要应用。

  2、设计理念

  本堂课采用“问题解决”教学模式,在课堂上既充分发挥学生的主体作用,又体现了教师的引导作用。整堂课先通过问题引导学生梳理已有的知识结构,展开合理的联想,提出整堂课要解决的中心问题:圆周运动等具周期性规律运动可以建立函数模型来刻画吗?从而引导学生带着问题阅读和钻研教材,引发认知冲突,再通过问题引导学生改造或重构已有的认知结构,并运用类比方法,形成“任意角三角函数的定义”这一新的概念,最后通过例题与练习,将任意角三角函数的定义,内化为学生新的认识结构,从而达成教学目标。

  3、教学目标

  知识与技能目标:形成并掌握任意角三角函数的定义,并学会运用这一定义,解决相关问题。

  过程与方法目标:体会数学建模思想、类比思想和化归思想在数学新概念形成中的重要作用。

  情感态度与价值观目标:引导学生学会阅读数学教材,学会发现和欣赏数学的理性之美。

  4、重点难点

  重点:任意角三角函数的定义。

  难点:任意角三角函数这一概念的理解(函数模型的.建立)、类比与化归思想的渗透。

  5、学情分析

  学生已有的认知结构:函数的概念、平面直角坐标系的概念、任意角和弧度制的相关概念、以直角三角形为载体的锐角三角函数的概念。在教学过程中,需要先将学生的以直角三角形为载体的锐角三角函数的概念改造为以象限角为载体的锐角三角函数,并形成以角的终边与单位园的交点的坐标来表示的锐角三角函数的概念,再拓展到任意角的三角函数的定义,从而使学生形成新的认知结构。

  6、教法分析

  “问题解决”教学法,是以问题为主线,引导和驱动学生的思维和学习活动,并通过问题,引导学生的质疑和讨论,充分展示学生的思维过程,最后在解决问题的过程中形成新的认知结构。这种教学模式能较好地体现课堂上老师的主导作用,也能充分发挥课堂上学生的主体作用。

  7、学法分析

  本课时先通过“阅读”学习法,引导学生改造已有的认知结构,再通过类比学习法引导学生形成“任意角的三角函数的定义”,最后引导学生运用类比学习法,来研究三角函数一些基本性质和符号问题,从而使学生形成新的认识结构,达成教学目标。

  新高一数学衔接课教案 篇5

  我们在初中的学习过程中,已了解了整数指数幂的概念和运算性质·从本节开始我们将在回顾平方根和立方根的基础上,类比出正数的n次方根的定义,从而把指数推广到分数指数·进而推广到有理数指数,再推广到实数指数,并将幂的运算性质由整数指数幂推广到实数指数幂·

  教材为了让学生在学习之外就感受到指数函数的实际背景,先给出两个具体例子:GDP的增长问题和碳14的衰减问题·前一个问题,既让学生回顾了初中学过的整数指数幂,也让学生感受到其中的函数模型,并且还有思想教育价值·后一个问题让学生体会其中的函数模型的同时,激发学生探究分数指数幂、无理数指数幂的`兴趣与__,为新知识的学习作了铺垫·

  本节安排的内容蕴涵了许多重要的数学思想方法,如推广的思想(指数幂运算律的推广)、类比的思想、逼近的思想(有理数指数幂逼近无理数指数幂)、数形结合的思想(用指数函数的图象研究指数函数的性质)等,同时,充分关注与实际问题的结合,体现数学的应用价值·

  根据本节内容的特点,教学中要注意发挥信息技术的力量,尽量利用计算器和计算机创设教学情境,为学生的数学探究与数学思维提供支持·

  三维目标

  1·通过与初中所学的知识进行类比,理解分数指数幂的概念,进而学习指数幂的性质·掌握分数指数幂和根式之间的互化,掌握分数指数幂的运算性质·培养学生观察分析、抽象类比的能力·

  2·掌握根式与分数指数幂的互化,渗透“转化”的数学思想·通过运算训练,养成学生严谨治学,一丝不苟的学习习惯,让学生了解数学来自生活,数学又服务于生活的哲理·

  3·能熟练地运用有理指数幂运算性质进行化简、求值,培养学生严谨的思维和科学正确的计算能力·

  4·通过训练及点评,让学生更能熟练掌握指数幂的运算性质·展示函数图象,让学生通过观察,进而研究指数函数的性质,让学生体验数学的简洁美和统一美·

  教学重点

  (1)分数指数幂和根式概念的理解·

  (2)掌握并运用分数指数幂的运算性质·

  (3)运用有理指数幂的性质进行化简、求值·

  教学难点

  (1)分数指数幂及根式概念的理解·

  (2)有理指数幂性质的灵活应用·

  新高一数学衔接课教案 篇6

  一、教学目标

  1·掌握商的算术平方根的性质,能利用性质进行二次根式的化简与运算;

  2·会进行简单的二次根式的除法运算;

  3·使学生掌握分母有理化概念,并能利用分母有理化解决二次根式的化简及近似计算问题;

  4·培养学生利用二次根式的除法公式进行化简与计算的能力;

  5·通过二次根式公式的引入过程,渗透从特殊到一般的归纳方法,提高学生的归纳总结能力;

  6·通过分母有理化的教学,渗透数学的简洁性·

  二、教学重点和难点

  1·重点:会利用商的算术平方根的性质进行二次根式的`化简,会进行简单的二次根式的除法运算,还要使学生掌握二次根式的除法采用分母有理化的方法进行·

  2·难点:二次根式的除法与商的算术平方根的关系及应用·

  三、教学方法

  从特殊到一般总结归纳的方法以及类比的方法,在学习了二次根式乘法的基础上本小节

  内容可引导学生自学,进行总结对比·

  新高一数学衔接课教案 篇7

  教学过程

  (一)创设情景,揭示课题

  1、复习初中所学函数的概念,强调函数的模型化思想;

  2、阅读课本引例,体会函数是描述客观事物变化规律的数学模型的思想:

  (1)炮弹的射高与时间的变化关系问题;

  (2)南极臭氧空洞面积与时间的变化关系问题;

  (3)“八五”计划以来我国城镇居民的恩格尔系数与时间的变化关系问题·

  3、分析、归纳以上三个实例,它们有什么共同点;

  4、引导学生应用集合与对应的语言描述各个实例中两个变量间的依赖关系;

  5、根据初中所学函数的概念,判断各个实例中的两个变量间的关系是否是函数关系.

  (二)研探新知

  1、函数的有关概念

  (1)函数的概念:

  设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有确定的`数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数(function).

  记作:y=f(x),x∈A.

  其中,x叫做自变量,x的取值范围A叫做函数的定义域(domain);与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域(range).

  注意:

  ①“y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”;

  ②函数符号“y=f(x)”中的f(x)表示与x对应的函数值,一个数,而不是f乘x.

  (2)构成函数的三要素是什么?

  定义域、对应关系和值域

  (3)区间的概念

  ①区间的分类:开区间、闭区间、半开半闭区间;

  ②无穷区间;

  ③区间的数轴表示.

  (4)初中学过哪些函数?它们的定义域、值域、对应法则分别是什么?

  通过三个已知的函数:y=ax+b(a≠0)

  y=ax2+bx+c(a≠0)

  y=(k≠0)比较描述性定义和集合,与对应语言刻画的定义,谈谈体会·

  师:归纳总结

  (三)质疑答辩,排难解惑,发展思维。

  1、如何求函数的定义域

  例1:已知函数f(x)=+

  (1)求函数的定义域;

  (2)求f(-3),f()的值;

  (3)当a>0时,求f(a),f(a-1)的值·

  分析:函数的定义域通常由问题的实际背景确定,如前所述的三个实例·如果只给出解析式y=f(x),而没有指明它的定义域,那么函数的定义域就是指能使这个式子有意义的实数的集合,函数的定义域、值域要写成集合或区间的形式.

  例2、设一个矩形周长为80,其中一边长为x,求它的面积关于x的函数的解析式,并写出定义域·

  分析:由题意知,另一边长为x,且边长x为正数,所以0<x<40·

  所以s==(40-x)x(0<x<40)

  引导学生小结几类函数的定义域:

  (1)如果f(x)是整式,那么函数的定义域是实数集R·

  (2)如果f(x)是分式,那么函数的定义域是使分母不等于零的实数的集合·

  (3)如果f(x)是二次根式,那么函数的定义域是使根号内的式子大于或等于零的实数的集合·

  (4)如果f(x)是由几个部分的数学式子构成的,那么函数定义域是使各部分式子都有意义的实数集合·(即求各集合的交集)

  新高一数学衔接课教案 篇8

  教学目标

  1、掌握平面向量的数量积及其几何意义;

  2、掌握平面向量数量积的重要性质及运算律;

  3、了解用平面向量的数量积可以处理垂直的问题;

  4、掌握向量垂直的条件、

  教学重难点

  教学重点:

  平面向量的数量积定义

  教学难点:

  平面向量数量积的定义及运算律的理解和平面向量数量积的应用

  教学过程

  平面向量数量积(内积)的定义:已知两个非零向量a与b,它们的夹角是θ,

  则数量|a||b|cosq叫a与b的数量积,记作a×b,即有a×b=|a||b|cosq,(0≤θ≤π)、

  并规定0向量与任何向量的数量积为0、

  探究:

  1、向量数量积是一个向量还是一个数量?它的符号什么时候为正?什么时候为负?

  2、两个向量的.数量积与实数乘向量的积有什么区别?

  (1)两个向量的数量积是一个实数,不是向量,符号由cosq的符号所决定、

  (2)两个向量的数量积称为内积,写成a×b;今后要学到两个向量的外积a×b,而a×b是两个向量的数量的积,书写时要严格区分、符号“·”在向量运算中不是乘号,既不能省略,也不能用“×”代替、

  (3)在实数中,若a?0,且a×b=0,则b=0;但是在数量积中,若a?0,且a×b=0,不能推出b=0、因为其中cosq有可能为0、

  新高一数学衔接课教案 篇9

  教材分析:

  集合概念及其基本理论,称为集合论,是近、现代数学的一个重要的基础,一方面,许多重要的数学分支,都建立在集合理论的基础上。另一方面,集合论及其所反映的数学思想,在越来越广泛的领域种得到应用。

  课型:

  新授课

  教学目标:

  (1)通过实例,了解集合的含义,体会元素与集合的理解集合“属于”关系;

  (2)能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体

  问题,感受集合语言的意义和作用;

  教学重点:

  集合的基本概念与表示方法;

  教学难点:

  运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合;教学过程:

  一、引入课题

  军训前学校通知:8月15日8点,高一年段在体育馆集合进行军训动员;试问这个通知的对象是全体的高一学生还是个别学生?

  在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高二、高三)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合(宣布课题),即是一些研究对象的总体。

  二、新课教学

  (一)集合的有关概念

  1.集合理论创始人康托尔称集合为一些确定的、不同的东西的全体,人们能意识到这

  些东西,并且能判断一个给定的东西是否属于这个总体。

  2.一般地,研究对象统称为元素(element),一些元素组成的总体叫集合(set),也简

  称集。

  3.关于集合的元素的特征

  (1)确定性:设A是一个给定的集合,x是某一个具体对象,则或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立。

  (2)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素。

  (3)集合相等:构成两个集合的元素完全一样

  4.元素与集合的关系;

  (1)如果a是集合A的元素,就说a属于(belong to)A,记作a∈A(2)如果a不是集合A的元素,就说a不属于(not belong to)A,记作a?A(或a A)

  5.常用数集及其记法

  非负整数集(或自然数集),记作N

  正整数集,记作N_或N+;

  整数集,记作Z

  有理数集,记作Q

  实数集,记作R

  (二)集合的表示方法

  我们可以用自然语言来描述一个集合,但这将给我们带来很多不便,除此之外还常用列举法和描述法来表示集合。

  (1)列举法:把集合中的元素一一列举出来,写在大括号内。

  如:{1,2,3,4,5},{x2,3x+2,5y3-x,x2+y2},?;

  思考2,引入描述法

  说明:集合中的元素具有无序性,所以用列举法表示集合时不必考虑元素的顺序。

  (2)描述法:把集合中的`元素的公共属性描述出来,写在大括号{}内。

  具体方法:在大括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征。

  如:{x|x-3>2},{(x,y)|y=x2+1},{直角三角形},?;

  强调:描述法表示集合应注意集合的代表元素

  {(x,y)|y= x2+3x+2}与{y|y= x2+3x+2}不同,只要不引起误解,集合的代表元素也可省略,例如:{整数},即代表整数集Z。

  辨析:这里的{ }已包含“所有”的意思,所以不必写{全体整数}。下列写法{实数集},{R}也是错误的。

  说明:列举法与描述法各有优点,应该根据具体问题确定采用哪种表示法,要注意,一般集合中元素较多或有无限个元素时,不宜采用列举法。

  三、归纳小结

  本节课从实例入手,非常自然贴切地引出集合与集合的概念,并且结合实例对集合的概念作了说明,然后介绍了集合的常用表示方法,包括列举法、描述法。

  新高一数学衔接课教案 篇10

  一、教材

  《直线与圆的位置关系》是高中人教版必修2第四章第二节的内容,直线和圆的位置关系是本章的重点内容之一。从知识体系上看,它既是点与圆的位置关系的延续与提高,又是学习切线的判定定理、圆与圆的位置关系的基础。从数学思想方法层面上看它运用运动变化的观点揭示了知识的发生过程以及相关知识间的内在联系,渗透了数形结合、分类讨论、类比、化归等数学思想方法,有助于提高学生的思维品质。

  二、学情

  学生初中已经接触过直线与圆相交、相切、相离的定义和判定;且在上节的学习过程中掌握了点的坐标、直线的方程、圆的方程以及点到直线的距离公式;掌握利用方程组的方法来求直线的交点;具有用坐标法研究点与圆的位置关系的基础;具有一定的数形结合解题思想的基础。

  三、教学目标

  (一)知识与技能目标

  能够准确用图形表示出直线与圆的三种位置关系;可以利用联立方程的方法和求点到直线的距离的方法简单判断出直线与圆的关系。

  (二)过程与方法目标

  经历操作、观察、探索、总结直线与圆的位置关系的判断方法,从而锻炼观察、比较、概括的逻辑思维能力。

  (三)情感态度价值观目标

  激发求知欲和学习兴趣,锻炼积极探索、发现新知识、总结规律的能力,解题时养成归纳总结的良好习惯。

  四、教学重难点

  (一)重点

  用解析法研究直线与圆的位置关系。

  (二)难点

  体会用解析法解决问题的数学思想。

  五、教学方法

  根据本节课教材内容的特点,为了更直观、形象地突出重点,突破难点,借助信息技术工具,以几何画板为平台,通过图形的动态演示,变抽象为直观,为学生的数学探究与数学思维提供支持.在教学中采用小组合作学习的方式,这样可以为不同认知基础的学生提供学习机会,同时有利于发挥各层次学生的作用,教师始终坚持启发式教学原则,设计一系列问题串,以引导学生的数学思维活动。

  六、教学过程

  (一)导入新课

  教师借助多媒体创设泰坦尼克号的情景,并从中抽象出数学模型:已知冰山的分布是一个半径为r的圆形区域,圆心位于轮船正西的l处,问,轮船如何航行能够避免撞到冰山呢?如何行驶便又会撞到冰山呢?

  教师引导学生回顾初中已经学习的.直线与圆的位置关系,将所想到的航行路线转化成数学简图,即相交、相切、相离。

  设计意图:在已有的知识基础上,提出新的问题,有利于保持学生知识结构的连续性,同时开阔视野,激发学生的学习兴趣。

  (二)新课教学——探究新知

  教师提问如何判断直线与圆的位置关系,学生先独立思考几分钟,然后同桌两人为一组交流,并整理出本组同学所想到的思路。在整个交流讨论中,教师既要有对正确认识的赞赏,又要有对错误见解的分析及对该学生的鼓励。

  判断方法:

  (1)定义法:看直线与圆公共点个数

  即研究方程组解的个数,具体做法是联立两个方程,消去x(或y)后所得一元二次方程,判断△和0的大小关系。

  (2)比较法:圆心到直线的距离d与圆的半径r做比较,

  (三)合作探究——深化新知

  教师进一步抛出疑问,对比两种方法,由学生观察实践发现,两种方法本质相同,但比较法只适合于直线与圆,而定义法适用范围更广。教师展示较为基础的题目,学生解答,总结思路。

  已知直线3x+4y-5=0与圆x2+y2=1,判断它们的位置关系?

  让学生自主探索,讨论交流,并阐述自己的解题思路。

  当已知了直线与圆的方程之后,圆心坐标和半径r易得到,问题的关键是如何得到圆心到直线的距离d,他的本质是点到直线的距离,便可以直接利用点到直线的距离公式求d。类比前面所学利用直线方程求两直线交点的方法,联立直线与圆的方程,组成方程组,通过方程组解得个数确定直线与圆的交点个数,进一步确定他们的位置关系。最后明确解题步骤。

  (四)归纳总结——巩固新知

  为了将结论由特殊推广到一般引导学生思考:

  可由方程组的解的不同情况来判断:

  当方程组有两组实数解时,直线l与圆C相交;

  当方程组有一组实数解时,直线l与圆C相切;

  当方程组没有实数解时,直线l与圆C相离。

  活动:我将抽取两位同学在黑板上扮演,并在巡视过程中对部分学生加以指导。最后对黑板上的两名学生的解题过程加以分析完善。通过对基础题的练习,巩固两种判断直线与圆的位置关系判断方法,并使每一个学生获得后续学习的信心。

  (五)小结作业

  在小结环节,我会以口头提问的方式:

  (1)这节课学习的主要内容是什么?

  (2)在数学问题的解决过程中运用了哪些数学思想?

  设计意图:启发式的课堂小结方式能让学生主动回顾本节课所学的知识点。也促使学生对知识网络进行主动建构。

  作业:在学生回顾本堂学习内容明确两种解题思路后,教师让学生对比两种解法,那种更简捷,明确本节课主要用比较d与r的关系来解决这类问题,对用方程组解的个数的判断方法,要求学生课外做进一步的探究,下一节课汇报。

  七、板书设计

  我的板书本着简介、直观、清晰的原则,这就是我的板书设计。

  新高一数学衔接课教案 篇11

  教材

  逻辑联结词

  目的

  要求学生了解复合命题的意义,并能指出一个复合命题是有哪些简单命题与逻辑联结词,并能由简单命题构成含有逻辑联结词的复合命题。

  过程

  一、提出课题:简单逻辑、逻辑联结词

  二、命题的概念:

  例:125 ① 3是12的.约数 ② 0.5是整数 ③

  定义:可以判断真假的语句叫命题。正确的叫真命题,错误的叫假命题。

  如:①②是真命题,③是假命题

  反例:3是12的约数吗? x5 都不是命题

  不涉及真假(问题) 无法判断真假

  上述①②③是简单命题。 这种含有变量的语句叫开语句(条件命题)。

  三、复合命题:

  1.定义:由简单命题再加上一些逻辑联结词构成的命题叫复合命题。

  2.例:

  (1)10可以被2或5整除④ 10可以被2整除或10可以被5整除

  (2)菱形的对角线互相 菱形的对角线互相垂直且菱形的

  垂直且平分⑤ 对角线互相平分

  (3)0.5非整数⑥ 非0.5是整数

  观察:形成概念:简单命题在加上或且非这些逻辑联结词成复合命题。

  3.其实,有些概念前面已遇到过

  如:或:不等式 x2x60的解集 { x | x2或x3 }

  且:不等式 x2x60的解集 { x | 23 } 即 { x | x2且x3 }

  四、复合命题的构成形式

  如果用 p, q, r, s表示命题,则复合命题的形式接触过的有以下三种:

  即: p或q (如 ④) 记作 pq

  p且q (如 ⑤) 记作 pq

  非p (命题的否定) (如 ⑥) 记作 p

  小结:1.命题 2.复合命题 3.复合命题的构成形式

  新高一数学衔接课教案 篇12

  重点

  理解角与角的相关概念;掌握角的度量单位以及单位之间的换算.

  难点

  理解角与角的相关概念;掌握角的度量单位以及单位之间的换算.

  一、创设情境,导入新知

  展示实物:时钟,圆规,折扇等.

  (1)观察实物与图片,你发现其中有什么相同图形吗?学生回答,教师点评,注意鼓励学生.

  (2)你能把观察得到的图形画在本子上或黑板上吗?这是一些什么图形?思考,动手画一画.

  (3)从黑板上这些不同的图形中,你能归纳出它们的共同特点吗?

  学生相互交流并回答,挖掘和利用现实生活中与角相关的背景,让学生在现实背景中认识角,培养学生的动手能力.引导学生观察并归纳角的共同点,进而引入课题.

  二、自主合作,感受新知

  回顾以前学的知识、阅读课文并结合生活实际,完成“预习导学”部分.

  三、师生互动,理解新知

  探究点一:角的概念及表示方法

  活动一:从生活中认识角

  我们看物体时,有视角,钟表的指针转动也形成角.请同学们看课本后回答下面问题.

  (1)角是一个几何图形,请大家说说,角是由什么图形构成的?(学生回答,教师点评,注意鼓励学生)

  (2)如果我们把角看作是一条射线绕它的端点旋转围成的图形,那么始边和终边又指什么?

  教师总结:角有两个定义,一个是静态的定义,把角看作由一点出发的两条射线组成的图形;另一个定义是动态的,把角看作一条射线绕端点旋转所形成的图形,把开始位置的射线叫做始边,把终止位置的射线叫做终边.

  (3)请同学们说一说,我们日常生活中,哪些地方有角.(学生举例)

  活动二:角的表示方法

  我们怎样表示角呢?请同学们看课本上说了几种表示方法?(学生先看书,后回答)

  教师总结:(1)用三个大写字母可以表示一个角,比如∠AOB.

  练习:谁能指出下列各角的顶点和两条边?

  注意:①三个字母的顺序有规定,顶点的字母必须写在中间.

  ②顶点的字母不一定用O,角的始边与终边的字母也可以随意.

  (2)当一个顶点只有一个角时,也可以用顶点的字母表示.比如,下面的角可以表示为∠O.

  练习:判断下列角可以用顶点的字母表示吗?

  (3)用数字或小写的希腊字母表示角.(注意:角中不能有角)

  练习:下面表示角的方法,哪个是正确的?哪个是错误的?

  探究点二:角的度量

  活动三:角的度量

  (1)请同学们借助量角器画出下列各角:

  ①30° ②45° ③60° ④90° ⑤120° ⑥150° ⑦62° ⑧105°

  学生画图,教师指导.(根据需要教师可先做示范)

  (2)任意画一个角,用量角器测量角的大小.提问:如果这个角的度数不是整数,应该怎样表示这个角的度数呢?引出角的度量单位是度、分、秒.

  教师总结:它们之间的关系是:1°=60′,1′=60″ (强调度、分、秒是60进制,不是十进制).

  (3)还有什么单位是60进制?

  (4)让学生画一个1°角,感受1°角有多大.

  四、应用迁移,运用新知

  1.角的定义

  例1 下列说法中,正确的是( )

  A.两条射线组成的图形叫做角

  B.有公共端点的两条线段组成的图形叫做角

  C.角可以看作是由一条射线绕着它的端点旋转而形成的图形

  D.角可以看作是由一条线段绕着它的端点旋转而形成的图形

  解析:A.有公共端点的两条射线组成的图形叫做角,故错误;B.根据A可得B错误;C.角可以看作是由一条射线绕着它的端点旋转而形成的图形,正确;D.据C可得D错误.

  方法总结:此题考查了角的定义,有公共端点的两条不重合的`射线组成的图形叫做角.这个公共端点叫做角的顶点,这两条射线叫做角的两条边.

  2.角的表示方法

  例2 下列四个图形中,能用∠1、∠AOB、∠O三种方法表示同一个角的图形是( )

  A B C D

  解析:在角的顶点处有多个角时,用一个字母表示这个角,这种方法是错误的.所以A、C、D错误.

  方法总结:角的两个基本元素中,边是两条射线,

  顶点是这两条射线的公共端点.

  3.判断角的数量

  例3 如图所示,在∠AOB的内部有3条射线,则图中角的个数为( )

  A.10 B.15 C.5 D.20

  解析:可以根据图形依次数出角的个数;或者根据公式求图中角的个数是12×5×(5-1)=10.

  方法总结:若从一点发出n条射线,则构成12n(n-1)个角.

  4.角的度量

  例4 见课本P144例1.

  方法总结:用度、分、秒表示的角度和用度表示的角度的相互转化的过程正好相反:大单位化小单位,乘以进率;而小单位化大单位要除以进率.

  五、尝试练习,掌握新知

  课本P144练习第1、2题、P145练习第1、2题.

  “随堂演练”部分.

  六、课堂小结,梳理新知

  通过本节课的学习,我们都学到了哪些数学知识和方法?

  本节课学习了角及角的有关概念,并会表示角;知道角的度量单位,并能进行单位的转换;会把角的知识与现实生活相联系,用角的知识解释生活中的一些现象.

  七、深化练习,巩固新知

  课本P145~146习题4.4第1~4题.

  “课时作业”部分.

【新高一数学衔接课教案】相关文章:

幼小衔接数学特色课教案范文(通用43篇)11-27

幼小衔接数学下教案03-23

幼小衔接数学的课程教案11-26

幼小衔接数学优质课教案范文(通用16篇)11-27

小升初衔接数学教案模板10-17

幼小衔接数学教案汇集01-06

幼儿园数学幼小衔接教案12-24

幼小衔接数学排序教案(精选8篇)11-25

幼小衔接比一比数学教案(精选12篇)12-06