- 相关推荐
《加减法的意义和各部分间的关系》教学设计(精选5篇)
作为一位杰出的老师,时常需要准备好教学设计,教学设计是把教学原理转化为教学材料和教学活动的计划。教学设计应该怎么写才好呢?下面是小编整理的《加减法的意义和各部分间的关系》教学设计,供大家参考借鉴,希望可以帮助到有需要的朋友。

《加减法的意义和各部分间的关系》教学设计 1
教材内容:
新人教版小学四年级下册第一单元《加减法的意义和各部分间的关系》。
教学要求 :
1.从实例中归纳加减法的意义和关系,初步理解加法与减法的意义以及它们之间的互逆关系。
2.初步学会利用加减法算式中各部分之间的关系求解加减法算式中的未知数。
3.培养学生发现数学知识和运用数学知识解决问题的能力。
教学重点:
理解加、减法的`意义和利用加减法的关系求加减法中的未知量。
教学难点:
从实例中探究加、减法的互逆关系。
教学过程:
一、谈话导入
二、理解加减法的意义
1、理解加法的意义。
出示例1
(1) 一列火车从西宁经过格尔木开往拉萨。西宁到格尔木的铁路长814 km,格尔木到拉萨的铁路长1142 km。西宁到拉萨的铁路长多少千米?
(2)问:根据这道题你收集到了哪些信息?
(让学生尝试用线段图表示)
(3)请学生根据线段图写出加法算式。
814+1142=1956 或 1142+814=1956
师:为什么用加法呢?
那怎样的运算叫做加法?(小组讨论)
(3)小结:把两个数合并成一个数的运算,叫做加法。(出示加法的意义)说明加法各部分名称
2、理解减法的意义
能不能试着把这道加法应用题改编成减法应用题呢?
(1)根据学生的回答,出示例1(2)(3)尝试用线段图表示:
师:根据线段图写出两道减法算式,并说说这样列式的理由。
1956-814=1142 或 1956-1142=814
(2)问:怎样的运算是减法?(小组讨论)
(3)小结:已知两个加数的和与其中的一个加数,求另一个加数的运算,叫做减法。(出示)
说明减法各部分名称
三、探究、理解加法和减法之间的关系。
1.问:上面的这些算式,你觉得它们之间有什么联系?观察上述四道算式中数字位置间关系,思考加法和减法之间的关系。然后以小组的形式进行讨论。(小组讨论。个别汇报)
2.根据学生的汇报,出示:
加数 + 加数 = 和 被减数 - 减数 = 差
3.师归纳并小结:减法是加法的逆运算。(板书)
4.加法各部分之间的关系。
出示:814+1142=1956
814=1956-1142
1142=1956-814
问:观察算式,你能得到什么结论?
和=加数+加数 加数=和-另一个加数
5.减法各部分之间的关系。
出示:800-350=450
800=450+350
350=800-450
问:通过观察这组算式,你能得出减法各部分的关系吗?
观察这组算式讨论归纳得:
被减数=差+减数 减数=被减数-差
6.练习“做一做”
四、总结
师:谁来说说我们这节课学习了些什么?你知道了什么呢?
五、板书设计
例1
(1)814+1142=1956 或 1142+814=1956
把两个数合并成一个数的运算,叫做加法。
(2)1956-814=1142 或 1956-1142=814
已知两个加数的和与其中的一个加数,求另一个加数的运算,叫做减法。
加法各部分之间的关系;
加数 + 加数 = 和 被减数 - 减数 = 差
减法各部分之间的关系:
被减数=差+减数 减数=被减数-差
减法是加法的逆运算.
《加减法的意义和各部分间的关系》教学设计 2
教学目标:
1.通过观察比较,进一步理解加、减法的意义,掌握加、减法之间的关系。
2.在经历探索发现加与减的互逆关系及加、减法各部分之间的关系。
3.运用加、减法关系解决简单的实际问题。
教学过程:
一、谈话导入
你们有好朋友吗?加法和减法是一对好朋友,他们之间会有怎样的秘密呢,这节课我们就一起来探索,根据你以前学过的知识,你觉得它们会有怎样的关系? 学生猜想后简单回馈 交流后板书课题:加、减法的意义和各部分之间的关系
二、互动新授
(1)教学加法的意义 课件出示教材第2页例一情境图
师:认真读一读题目,你知道西宁到拉萨的铁路长多少千米吗?如果要用线段图的形式表示它们之间的关系,你能画出来吗?怎样列式计算呢?
学生绘制并进行展示,思考后独立列式:814+1142=1956(千米)
师:结合加法算式,说说这道加法算式表示什么意义?你觉得加法是一种什么样的运算?
师肯定学生的回答,并小结:把两个数合并成一个数的算式,叫做加法。
师:你知道加法各部分的名称吗? 交流后明确: 相加的两个数叫做加数,加得的数叫做和。
(2)教学减法的意义 课件 出示教材第3页第(2)(3)小题 引导学生分析数量关系,并列式计算 指名板演,并说一说为什么用减法计算。
师:观察并比较一下,第(2)(3)题与第(1)题有什么关系,第(2)(3)题都是分别已知了什么?求什么?怎样算?
启发学生:第(1)题是已知两个加数,求它们的和用加法。
第(2)(3)题都是已知两个数的和与其中一个加数,求另一个加数,用减法。
想一想,减法是什么样的运算?
教师情调说明:减法是已知两个数的和与其中一个加数,求另一个加数的运算
(3)教学加减法各部分名称 师:在减法中,已知的.和叫什么?减去的已知加数叫做什么?求出的未知数叫做什么? 引导学生明确,在减法中,已知的和叫做被减数,减去的已知加数叫做减数,求出的未知数叫做差。
2.探索加、减法各部分之间的关系
(1)加法各部分之间的关系。
师:在前面,我们已经理解了加法和各部分之间的关系,那谁能来说一说加法各部分之间的关系?
汇报;加法各部分之间的最基本的关系是:和=加数+加数(板书) 知道和和其中一个加数,求另一个加数,关系式是:加数=和—另一个加数(板书)
(2)减法各部分之间的关系 减法各部分之间又有什么关系呢?
汇报:减法各部分间最基本的关系是:差=被减数-减数(板书) 如果知道被减数和差,求减数是:减数=被减数-差(板书) 如果知道减数和差,求被减数 是:被减数=减数+差(板书)
师:通过刚才几个算式的比较,你能用一句话来概括加减法之间的关系吗?
小结得出:减法是加法的逆运算,并引导学生理解逆运算中的“逆”的意思。
《加减法的意义和各部分间的关系》教学设计 3
目标确定的依据
1、课程标准相关要求
(1)在具体运算和解决简单实际问题的过程中,体会加与减、乘与除的互逆关系。
2、教材分析
对于加、减法的意义和各部分间的关系,教材通过创设生活中的情景,先教学加法,然后以加法及加法的意义为基础,从减法是加法的逆运算的角度来了解减法的意义,这样有利于学生理解加、减法各部分间的关系。根据观察比较,弄清楚加减法的已知条件,最后掌握加、减法各部分间的关系。
3、学情分析
在之前的学习中学生对整数加、减法有较多的接触,积累了丰富的有关加、减的意义的感性认识。本节课是对加、减法运算认识的巩固和扩展,教材通过解决简单的实际问题,激活学生已有的知识与经验,对整数加、减法的意义和关系进行抽象概括,为将来学习小数、分数加、减法的意义和关系打下基础。
学习目标:
1.借助解决问题的具体情境,在教师的引导下,能用自己的语言概括总结加、减法的意义,提高抽象概括能力。
2.通过比较、概括等活动,能发现并用文字表示加、减法各部间的'关系,会在实际计算中运用。
3.通过巩固练习进一步提升逻辑推理能力及运用知识解决实际问题的能力。评价任务:
1、出示例题后,学生自己独立的思考,尝试解答,与同桌说一说自己是怎样想的,并在全班交流自己的解题思路。
2、以小组合作的方式,根据自己日常的生活经验,编出一些类似的实际问题并加以解答。
3、通过解决问题,结合实例能够用简洁的语言概括加、减法的意义,分析问题中所存在的数量关系。
(一)课前设计
1.预习任务
(1)你能根据第一题的结果写出后面两题的得数吗?
① 23+24=47 47-24= 47-23=
② 3468+475=3943 3943-3468= 3943-475=
(2)请你各编一道用加法解决的问题和一道用减法解决问题,并说说为什么用加法和减法。
(二)课堂设计
1.创设情境,引入新课
熟悉《天路》这首歌吗?你们知道中国新世纪四大工程之一,被誉为“天路”的工程是什么吗?青藏铁路的建设创造了很多高海拔地区铁路建设的奇迹,今天这节课我们就从数学的角度一起走近青藏铁路。
出示课件:
例1 一列火车从西宁经过格尔木开往拉萨。西宁到格尔木的铁路长814km,格尔木到拉萨的铁路长1142km。
你能根据信息提出用加法解决的数学问题吗?能改编成减法问题吗?
西宁到拉萨的铁路长多少千米?格力木到拉萨的铁路长多少千米?西宁到格里木的铁路长多少千米?这些都是用加、减法解决的问题,这节课我们来研究加法和减法的意义和关系等相关知识,(板书课题)【设计意图:课程标准中指出:“数学教学活动应激发学生兴趣,调动学生积极性,引发学生的数学思考,鼓励学生的创造性思维”。在课的开始,引导学生自主提出数学问题,在激发学生研究兴趣的同时,明确研究问题。】2.问题探究
(1)概括加法的意义
①尝试解答
同学们提出的问题能够解决吗?我们先来看看第一个问题,请每个同学自己动手试一试。想一想用的什么方法?为什么用这种方法?
②汇报交流,展示解题过程
出示线段图,直观再现把814km与1142km合并在一起,并在算式的“+”下面板书:合并。
③提出问题,概括加法的意义
用你自己的话说一说什么是加法?学生思考、交流
规范学生的表述,把两个数合并成一个数的运算叫加法。板书:加法的意义
④回顾介绍加法算式各部分名称
你知道加法算式中这些数都叫什么名字吗?(板书:加数+加数=和)
(2)概括减法的意义
①尝试解答
刚才同学们还根据加法改编了两个减法问题,你们能解决吗?请大家试一试,看看谁的速度快。
②汇报交流,交流思考过程
同学们算的真快,没看到大家列竖式,你是怎样计算的?为什么用加法?
③提出问题,概括减法的意义
引导学生观察三道题目,思考:三个问题有什么联系?与第一题相比,第(2)、(3)题分别是已知什么?求什么?请你用自己的话说一说什么是减法?(同桌之间先说一说)
根据学生的回答规范减法的意义。(板书:减法的意义)
④回顾介绍减法算式各部分名称
你知道减法算式中各部分的名称吗?
介绍减法算式各部分名称(被减数-减数=差)
(3)加、减法的关系
观察三个算式,思考:他们之间有什么联系?
在学生比较交流的基础上,强调归纳:加法是“合”的情境,减法是“分”的情境,也就是说减法运算是和加法运算相反的运算,相反的运算在数学中叫逆运算。所以,我们说减法是加法的逆运算。(板书:减法是加法的逆运算)【设计意图:小学阶段的数学学习应当是一个生动活泼的、主动的和富有个性的过程。通过学生对自主提出问题的解决,逐步体会运算的本质含义,并抽象总结为概括性的语言,在此过程中逐步完善学生的认知,培养学生的抽象概括能力。】
(4)加、减法各部分间的关系
观察黑板上的算式,你有什么发现?根据黑板上的三个算式和算式中各部分的名称,你能发现加、减法各部分之间有怎样的关系吗?
小组讨论并组内交流,全班交流,整理总结:
加法各部分间的关系:和=加数+加数
加数=和-另一个加数
减法各部分间的关系:差=被减数-减数
减数=被减数-差
被减数=减数+差【设计意图:通过引导学生对加、减法关系进行整理,进一步引发学生对加、减法运算的深层次理解,感受数学的逻辑性。】
3.巩固练习
(1)下列各题应该用什么方法计算?为什么?
滑雪场上午卖出86张门票,下午卖出59张门票。全天一共卖出多少张门票?
滑雪场全天卖出145张门票,上午卖出86张门票。下午卖出多少张?
先独立完成,再集体汇报,汇报时,要让学生说出算式并解释原因。
(2)根据2468+575=3043,直接写出下面两道题的得数。
3043-2468= 3043-575=
先独立完成,再集体汇报,汇报时,要让学生说出算式并解释原因。
(3)猜猜我是几?
先独立完成,再集体汇报,汇报时,要让学生说出算式并解释原因。
4.课堂总结通过这节课的学习,你有哪些收获?对于加、减法有哪些新的认识?
(三)课时作业
题号1:下列各题应该用什么方法计算?为什么?
①华光文具店运来一批练习本,卖出370包,剩下630包。运来多少包练习本?
②兴华小学一共有学生843人,其中男生有418人,女生有多少人?
答案:①370+630=1000(包) ②843-418=425(人)
解析:第一题要求运来的包数,就是把卖出的和剩下的合起来。第二题要求女生部分就是把总人数去掉其中男生的部分。
【考察目标1】题号2:根据加、减法各部分间的关系,写出另外两个等式。
例:23+24=47 47-24=23 47-23=24
247+435=682
643-175=468
569-346=223
答案:682-247=435 682-435=247
643-468=175 468+175=643
569-223=346 346+223=569
解析:【考察目标2】根据加减法的互逆关系或各部分间的关系列算式
题号3:篮球125元 足球115元 排球148元
(1)买两个足球和一个篮球一共要多少元?
(2)你还能提出其他的数学问题并解答吗?
答案:(1)115+115+125=355(元) (2)答案不唯一
解析:【考察目标3】运用所学知识解决加减法的实际问题。
题号4:小芳做作业时遇到一道加法题,一不小心把37错写成了137,结果得到的和293,问原来的两个加数分别是什么?
答案:37和56
解析:【考察目标2、3】因为把加数37看成137得到293,所以多加了100,原来的和是293-100=193,因为一个加数是37,所以另一个加数应该为193-37=56。
板书设计:
加减法的意义和各部分间的关系
814+1142=1956 1956-814=1142 1956-1142=814
加数 + 加数 = 和 被减数 - 减数 = 差
减法是加法的逆运算
加数 = 和 – 另一个加数 被减数 = 减数 + 差
被减数 – 差 = 减数
《加减法的意义和各部分间的关系》教学设计 4
教学目标
1.使学生理解加法的意义,并会应用解答实际问题.
2.进一步认识加法算式中各部分的名称以及明确0在加法中的特殊性.
3.使学生理解并掌握加法交换律并能运用这一定律进行验算.
加法的意义教学设计意义的建立,加法交换律的概括及对它们的理解、掌握.教学难点学生对加法意义、加法交换律运用.
教学步骤
一、复习.
1、口算.44+56 37+23 180+20 42+8+1012+0 0+17 386+124 124+235
2、导入 :以前我们学过了加法的计算方法,这节课我们还要进一步学习、掌握加法的一些规律性知识,这将对我们以后的学习有很大帮助.
二、探究新知.
(一)教学加法的意义.
1、加法的意义.
(1)例1 一列火车从北京经过天津开往济南,北京到天津的铁路长137千米,天津到济南的铁路长357千米.北京到济南的铁路长多少千米?
教师提问:这题怎样解答?(因为已知北京到天津铁路长是137千米,又知道天津到济南的铁路长是357千米,要求北京到济南的铁路长,就是把137与357合起来,所以要用加法计算.)
教师提示:把137与357合并起来用加法计算,加法是什么样的运算呢?(板书:两个数合并成一个数的运算就叫加法)
教师明确:这就叫加法的意义.(板书:加法的意义)
(2)练习:小强有125枚邮票,小明有75枚邮票.小强和小明一共有多少枚邮票?说明理由:
已知小强与小明的`邮票张数,要求小强与小明共有多少张邮票,就是把两人的邮票数合并起来.加法就是把两个数合并成一个数的运算,所以这道题要用加法计算.
2、加法等式中各部分名称.教师提问:我们已经学过加法各部分的名称,在137+357=494算式中,各部分的名称是什么?(板书:加数 加数 和)
3、有关0的加法.
教师提问:一个自然数和0相加,得到的和与加数比较会怎样呢?有关0的加法可有哪几种情况呢?
小结:任何数和0相加都得原数.
《加减法的意义和各部分间的关系》教学设计 5
1、教师谈话:通过以上学习,我们知道了加法的意义,加法各部分的名称以及有关0的加法的特殊性.除此之外,关于加法的运算还有一些基本性质,它对我们以后的计算将起到很大的作用.
2、教师提问:137+357=494(千米),表示求的是什么?如果要求济南到北京的铁路长又该怎样列式计算呢?357+137=494(千米)
3、引导学生观察,比较两种解法的结果.
教师板书:
137+357=357+134、
出示例2,引导学生归纳规律.
18+17○17+18124+235○235+1240+25○25+0规律:
①每个等式中,每组算式中有两个加数,而且两个加数相同,只是交换了位置.
②每个等式中,左右两边的加数的和相等.教师说明:两个数相加,交换加数的位置,它们的和不变,这叫做加法交换律.
教师强调:我们要看一些等式哪些符号不符合加法交换律就必须看两个加数的位置变不变,它们的和变不变.当然前提是等号两边的两个加数必须相同.
5、练习:
判断:下面各等式运用了加法交换律,对吗?为什么?
9+7=7+9 10+1=10+120+8=2+26 2+0=0+26、用字母表示加法交换律.
教师指出:以上我们学习了加法的交换律,并运用它做了练习,这一定律若用字母该怎样表示呢?
教师强调:用字母表示这一运算定律更简单清楚.如果用字母a和b分别表示两个加数(教师领读几遍,提醒学生不要按汉语拼音来读)
教师板书:a+b=b+a
提醒注意:a与b可以表示0、1、2、3、??中任意整数,如1+2=2+1,9+20=20+9等,所以a+b=b+a表示任意两个数相加,交换加效的位置,和不变.而像这些(指其中的等式)一个用数字表示的等式只能表示两个具体的数,交换位置,和不变.a+b=b+a这一公式表示的一类所有符合条件的.式子,交换加数位置,和不变.
7、学生分组自由举例说明加法交换律.
8、学习、掌握了加法的交换律,目的在于更好地运用.实际上,在以前我们早就应用它解决计算问题.同学们想一想:在哪些计算中都用了加法交换律呢?(验算)
9、练习:运用加法交换律,在下面的□里填上适当的数.
766+589=589+□ 257+□=474+257 a+15=15+□
三、巩固发展.
1、填空.
(1)把( )数合并成( )数的运算叫做加法.
(2)一个数加0,还得( ).如12+0=( ).
2、下面各等式哪些符合加法交换律?符合的画“√”.
230+370=380+220 30+50+40=50+30+40 a+10=100+a 230+420=430+220
四、课堂小结.
今天我们学习了加法的意义和加法的一个运算定律——加法交换律.谁能结合具体的题目说一说的含义?
(学生讨论)
五、布置作业 .
1、根据运算定律在下面的□填上适当的数.
48+□=72+□ 29+35=□+29 a+38=□+□□+55=55+42
2、口算下面各题,说一说是怎样应用运算定律的.
91+89+11 85+41+15+59 168+250+32 282+53+37+18
六、板书设计加法的意义和运算定律例
1、一列火车从北京经过天津开往济南,北京到天津的铁路长137千米,天津到济南的铁路长357千米.北京到济南的铁路长多少千米?
137+357=494(千米)357+137=494(千米)
答:北京到济南的铁路长494千米.
意义:把两个数合并成一个数的运算叫做加法.7+0=70+7=7 0+0=0
例2
加法交换律:
137+357=357+137 18+17=17+18 24+235=235+24
【《加减法的意义和各部分间的关系》教学设计】相关文章:
加减法的意义和各部分间的关系教学设计范文11-08
《乘除法的意义和各部分间的关系》教学反思11-16
乘除法的意义和各部分间的关系说课稿10-09
《加减法意义和各部分间的关系》教后反思(通用14篇)02-19